05-07-2015, 12:05 PM
Детектор типа 3 состоит из классического пикового детектора на 2-х ОУ с компенсацией утечки и УВХ
Временная диаграмма работы схемы:
Синим показан входной сигнал, чёрным - сигнал сброса пикового детектора, красным - сигнал на выходе пикового детектора, розовым- сигнал хранение\ слежение УВХ, зелёным - сигнал на выходе УВХ. Идея состоит в том, что в положительной половине периода устанавливается пиковый детектор, а в отрицательной половине его выходное напряжение запоминается УВХ. Видим, что при постоянной амплитуде входного сигнала на выходе такого детектора будет постоянное напряжение, равное амплитуде, без каких-либо пульсаций (в идеале).
Этот тип детектора сложнее всех, но потенциально обладает наилучшим сочетанием точности и подавления пульсаций. Основных проблем две:
1) Как оказалось, от пикового детектора очень сложно добиться нужной неравномерности АЧХ во всём диапазоне. Сами просходящие процессы крайне нелинейны и плохо моделируются. Измерения напряжения на частотах выше 100Кгц с точностью 0.1% представляют собой большую проблему - у меня таких приборов просто нет. (есть HP34410). Примерно можно ожидать точность 0.2-0.4% до 1 Мгц. Также очень сложно найти быстродействующий диод с малой утечкой.
2) Реальные ключи, используемые в УВХ, имеют перенос заряда, что приводит к появлению на выходе детектора глича с частотой Fвх\2. Я делал макет УВХ с двумя типами ключей: DG411 и ADG1222. На картинке - синхронное сэмплирование синуса 1МГц 4В п-п, промодулированного прямоугольником 10КГц с коэффициентом 2%, после пикового детектора со сбросом.
Третья картинка - один из лучших (по переносу заряда) CMOS ключей ADG1222 в той же схеме.
Изменение отрицательного питания от -1 до -17В на виде переходного процесса сказывается мало
К сожалению, собрать вместе все части этого детектора сил у меня уже не хватило.
Временная диаграмма работы схемы:
Синим показан входной сигнал, чёрным - сигнал сброса пикового детектора, красным - сигнал на выходе пикового детектора, розовым- сигнал хранение\ слежение УВХ, зелёным - сигнал на выходе УВХ. Идея состоит в том, что в положительной половине периода устанавливается пиковый детектор, а в отрицательной половине его выходное напряжение запоминается УВХ. Видим, что при постоянной амплитуде входного сигнала на выходе такого детектора будет постоянное напряжение, равное амплитуде, без каких-либо пульсаций (в идеале).
Этот тип детектора сложнее всех, но потенциально обладает наилучшим сочетанием точности и подавления пульсаций. Основных проблем две:
1) Как оказалось, от пикового детектора очень сложно добиться нужной неравномерности АЧХ во всём диапазоне. Сами просходящие процессы крайне нелинейны и плохо моделируются. Измерения напряжения на частотах выше 100Кгц с точностью 0.1% представляют собой большую проблему - у меня таких приборов просто нет. (есть HP34410). Примерно можно ожидать точность 0.2-0.4% до 1 Мгц. Также очень сложно найти быстродействующий диод с малой утечкой.
2) Реальные ключи, используемые в УВХ, имеют перенос заряда, что приводит к появлению на выходе детектора глича с частотой Fвх\2. Я делал макет УВХ с двумя типами ключей: DG411 и ADG1222. На картинке - синхронное сэмплирование синуса 1МГц 4В п-п, промодулированного прямоугольником 10КГц с коэффициентом 2%, после пикового детектора со сбросом.
Третья картинка - один из лучших (по переносу заряда) CMOS ключей ADG1222 в той же схеме.
Изменение отрицательного питания от -1 до -17В на виде переходного процесса сказывается мало
К сожалению, собрать вместе все части этого детектора сил у меня уже не хватило.